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Risk assessment forms the basis for both occupational
health decision-making and the development of occupational
exposure limits (OELs). Although genetic and epigenetic data
have not been widely used in risk assessment and ultimately,
standard setting, it is possible to envision such uses. A growing
body of literature demonstrates that genetic and epigenetic
factors condition biological responses to occupational and
environmental hazards or serve as targets of them. This pre-
sentation addresses the considerations for using genetic and
epigenetic information in risk assessments, provides guidance
on using this information within the classic risk assessment
paradigm, and describes a framework to organize thinking
about such uses. The framework is a 4 × 4 matrix involving the
risk assessment functions (hazard identification, dose-response
modeling, exposure assessment, and risk characterization) on
one axis and inherited and acquired genetic and epigenetic
data on the other axis. The cells in the matrix identify how ge-
netic and epigenetic data can be used for each risk assessment
function. Generally, genetic and epigenetic data might be used
as endpoints in hazard identification, as indicators of exposure,
as effect modifiers in exposure assessment and dose-response
modeling, as descriptors of mode of action, and to characterize
toxicity pathways. Vast amounts of genetic and epigenetic data
may be generated by high-throughput technologies. These data
can be useful for assessing variability and reducing uncertainty
in extrapolations, and they may serve as the foundation upon
which identification of biological perturbations would lead to
a new paradigm of toxicity pathway-based risk assessments.
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INTRODUCTION

Agrowing body of research and information demonstrates
that genetic and epigenetic factors condition biological

response to occupational and environmental hazards or serve
as targets of them.(1–19) These factors can be biomarkers of
susceptibility, exposure, or effect depending on how they are
used. Critical in using genetic or epigenetic biomarkers in
research and risk assessment is the extent to which they are
validated for a specific use.(20,21) Incorporating genetic and epi-
genetic information into risk assessments can provide a range
of benefits leading to the development of more precise occupa-
tional exposure limits (OELs). The Environmental Protection
Agency (EPA) has described the use of genetic information
in environmental risk assessment as an advanced approach
in their Next Generation Risk Assessment Report.(22) At the
most fundamental level, genetic and epigenetic information
may be useful in addressing uncertainty and inter-individual
variability, two major issues in risk assessment. Uncertainty
can be seen in the four components (hazard identification,
dose-response modeling, exposure assessment, and risk char-
acterization) of the common model of the risk assessment
process.(23) Generally, “any collection of observations describ-
ing response to hazardous agents will include uncertainty
and variability from a variety of sources.”(24) Uncertainty has
been defined as lack of precise knowledge about the state
of nature.(23) “Uncertainty in risk assessment is commonly
associated with issues such as the selection of concentration-
response models and extrapolating across exposure conditions,
species, or units of exposure.”(23) In contrast, the concept
of variability usually pertains to a differential response of
individual people or animals to hazardous exposures. Differ-
ential response to occupational hazards may arise from several
sources including variability in exposure, biologic response,
and methodology.(24) Genetic and epigenetic factors may be
a major cause of variability in response in similarly exposed
individuals.(25)
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FIGURE 1. Incorporating genetics and epigenetics into the stan-
dard risk assessment paradigm. Reprinted from NeuroToxicology
30(7), Curran, C.P., Park, R.M., Ho, S. M., and Haynes, E.
N., Incorporating genetics and genomics in risk assessment for
inhaled manganese: From data to policy, 754-760, Copyright 2009,
with permission from Elsevier.

A genetic mutation or epigenetic change can be the result
of an occupational or environmental exposure and be passed
down to future generations through inheritance; however, there
is controversy over the extent to which an epigenetic mech-
anism is responsible for transgenerational effects.(12,26,27) Ge-
netic and epigenetic characteristics can also serve to modify the
effect of an occupational/environmental exposure and disease.
Possibly even more powerful will be the use of genetic and
epigenetic information to help develop a new paradigm of
toxicity-pathway-based risk assessment.(28,29) This is where
important biological perturbations in toxicity pathways could
be used to describe previous exposures, modes of action, and
pathologic endpoints for use in conducting risk assessments
on “tens of thousands of chemicals and substances on which
toxicity information is incomplete and emerging chemicals
and substances that will need risk assessment and possible
regulation.”(29) Much of this may be possible because of the use
of high-throughput technologies and computational strategies
that allow for rapid generation of sequence data and infor-
mation on the expression and regulation of a vast number of
genes.(30–32) To realize these benefits for risk assessment, it
may be of value to have a framework for considering genetic
and epigenetic information in each step of risk assessment.
We previously proposed a model for examining genetic sus-
ceptibility to inhaled manganese(33) which we have updated
to consider other occupational exposures (Figure 1). In this
article, a framework is proposed to cover the wide range of
occupational exposures. This framework is based on previous
considerations of genetic information in occupational health
by Schulte(34) and on the conceptual work of Bollati and
Baccarelli,(12) as shown in Figure 2.

In order to fully appreciate the proposed framework, the
nature of genetic and epigenetic information needs to be con-
sidered. There are two levels of thinking about genetic and
epigenetic information in occupational health risk assessment.

FIGURE 2. Possible genetic and epigenetic pathways linking
occupational/environmental exposures and adverse effects. (1)
Genetic information inherited during meiosis; (2) genotoxic effects;
(3) inherited effects that do not depend on DNA sequence
variations; and (4) epigenetic effects. Adapted from Bollati and
Baccarelli.(12) Reprinted by permission from Macmillian Publishers
Ltd: Heredity, Bollati, V. and Baccarelli, A., Environmental epige-
netics, 105(1), copyright 2010.

The first involves the inclusion during in vitro, animal, and
epidemiologic research studies of genetic/epigenetic factors
that will be of use in risk assessment, and the second is the use
of the data from those studies in quantitative risk assessments.
To date, however, despite great potential, there has been little
use of genetic or epigenetic information in quantitative risk
assessments for occupational or environmental exposures. This
is because, thus far, the evidence base for risk assessors to
use has been limited, but the number of studies with such
information is growing.(1,2,8,9,12–14,31,35–43)

Key points of emphasis covered in this article include the
following.

• There is a growing but limited amount of genetic and epige-
netic data that can be used for hazard identification; dose-
response modeling, exposure assessment, and risk charac-
terization.

• Additional research is required to identify modes of action
and adverse outcome pathways before the risk of genetic
and epigenetic variation can be quantified.

• Assessing gene-environment interaction is the foundation
on which genetic and epigenetic data can be useful in risk
assessment.

• Animal and in vitro data should complement human data
collected in molecular epidemiologic studies when occupa-
tional health risk assessments are performed

• Studies should be designed to maximize information on
both genetic and epigenetic variation and their physiological
relevance to adverse outcome pathways.
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• Ultimately, if genetic and epigenetic data are to be useful in
occupational health risk assessments, attention must be paid
to the ethical, legal, societal, and political implications.

GENETIC RESEARCH

while there is at least a 150-year history of scientific assess-
ment of genetics, it is only in the last 20 years that the se-

quence of the human genome has been mapped. Understanding
of the inherited genetic component of disease and knowledge
about the interaction of genetic and environmental factors have
increased, but there are still many questions about the function
of a large proportion of genes, the entirety of the sequences,
and the involvement of multiple genes in disease processes.
Moreover, the reductionist approach of focusing on one or a
few genes as instrumental in an exposure-disease relationship
may not be supportable for many occupational exposures. This
means there will be a need for systems-based approaches to
interpret genetic data.(7,11,30,44) For example, the amount of
genetic information on Phase I and Phase II metabolism of
industrial chemicals has grown considerably in recent years.
Understanding which genotypes increase susceptibility or re-
sistance to occupational exposures could allow risk assessors
to reduce the typical uncertainty factor for inter-individual
variability from 10 to a lower, data-derived number. Pohl and
Scinicariello(45) attempted to do this for solvent metabolism
by CYP2E1 incorporating multiple reported allelic variants
affecting catalytic activity and gene expression; however, they
acknowledged this approach is probably limited to single
chemicals and would be more challenging for exposure to
mixtures.

There is a rich history of using a small number of mutations
in research and risk assessments for radiation and chemical
carcinogens.(41,46–51) A classic example is benzene toxicity
where polymorphisms in NQO1 can increase the risk of ad-
verse health effects whereas mutations in GSTM1, GSTT1,
and GSTA1 can alter metabolism and internal dose.(51) The
U.S. EPA cancer risk assessment guidelines are based on
defining the mode of action.(50) Two key events, mutation and
cell proliferation, are critical in defining the mode of action for
a particular carcinogen.(41,52) The use of genetic information
for “improving current risk assessment practices is based on
the premise that the frequency of somatic mutation is of critical
importance in understanding and modeling carcinogenesis.
Ultimately, genotypic selection will have the greatest impact
on risk assessment if measurement of spontaneous mutations
is possible.”(36) Importantly, numerous assays have been used
routinely to screen for DNA damage, which have proven
effective at identifying new carcinogens.(2,9,53)

Gene-Environment Interactions
The complexities of gene-environment interactions are im-

portant to recognize if data from these studies and data sets are
to be useful in quantitative risk assessment. Gene-environment
interactions have been simplistically interpreted so that genes
are equated as causal factors inside the body and environments

as causal factors outside the body.(54) However, the term “gene-
environment” interaction can involve a range of interpretations
of joint effects, including the risk of a single genotype across
a range of environmental exposures, or the risk of exposure
across a range of genotypes. The complexity of these inter-
actions will influence how they may be used or interpreted in
risk assessments.(54)

Animal or epidemiological research involving genetic fac-
tors will be useful for occupational health quantitative risk
assessments. The multitude of genetically modified and highly
inbred animal models allow testing of specific gene x envi-
ronment interactions when epidemiology data suggests strong
correlations between allelic differences and increased risk.(55)

Ultimately, evidence from epidemiologic studies involving
assessment of gene-environment interactions may be the most
desirable input for quantitative risk assessments.(56) The phrase
“gene-environment” interaction infers that the direction and
magnitude of the clinical and exposure-response effect can
vary with different genetic polymorphisms.(15,35,44,57)

Multiple types of research designs have been used to de-
tect and assess the magnitude of gene-environment interac-
tions.(56–59) In the past, the relationship between genes and
the environment has been hampered by limited knowledge of
the human genome, but this has changed with the emergence
of such efforts as the Human Genome Project, the Hap Map
Project, and the Environmental Genome Project, and the ability
to directly assess DNA sequence variability primarily in the
form of single nucleotide polymorphisms (SNP) as well as the
ability to assess gene expression with microarrays.(6,7,60,61,63)

Studies of gene-environment interactions require information
on both elements in the relationship.(63)

While animal and in vitro studies will contribute to fu-
ture risk assessments, molecular epidemiological studies also
should be of great importance.(64,65) The study of gene-environ-
ment interaction in worker populations using molecular epi-
demiologic methods is increasing.(9,14,64–66) Thomas(67,68) has
reviewed the epidemiological and statistical issues involved
in the investigation of gene-environment interactions and pro-
vided extensive guidance that is useful as the foundation for
conducting such research and considering it in quantitative
risk assessments. Clearly, in addition to genetic data, valid and
adequate exposure data are critical. (This will be discussed
later in the article.)

Sample size, statistical power, and multiple comparisons
are other major factors that need to be considered in evaluating
gene-environment studies.(19,20,68) Ioannidis et al.(69) found that
sample size requirements can be very large in studies of gene
associations in complex diseases and even larger if there are
synergistic gene-environment interactions. To date, there are
four major approaches to the analysis of interactions between
genetic and environmental factors. These include interactions
with single genes, pathway-driven approaches, and systems
biology, and genome-wide association studies.(68)

However, since multiple genes are generally involved in
response to an exposure, there is need for a comprehensive
model for a complex disease involving multiple genes and
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multiple environmental risk factors.(68) In some cases, there
will also be gene-gene interactions. A widely used tool to
analyze high-dimensional interaction has been Multifactor
Dimension Reduction (MDR)(70,71) “. . . which searches across
all possible partitions of the cells of the multi-pathway contin-
gency table for the best classifier of disease risk on multiple
training sets and tests, [and assesses] their predictions on the
remaining data.”(68) The pathway-driven approach is based in
establishing hypotheses about causal pathways. This could
involve regression modeling tools and Bayesian modeling. In
Bayesian modeling, the prior covariates can be derived from
various ontology data bases such as the Kyoto Encyclopedia
of Genes and Genomes, Gene Ontology, Ingenuity Pathway
Analysis and various others.(68)

Another aspect of gene-environment interactions involves
expanding the environmental exposure evidence base and in-
tegrating population scale and molecular scale data. Patel
et al.(72) described a framework for an environment-wide as-
sociation studies (EWAS) analog to genome-wide association
studies (GWAS). EWAS allows for the evaluation of multiple
environmental factors to address the complex nature of expo-
sure in relation to disease. Since GWAS and EWAS operate on
the population scale, “. . . there is need to integrate molecular-
scale toxicological evidence—such as how an environmental
factor might modulate a biological process—between expo-
sure and genes.”(19) The approach that was used involved de-
riving lists of candidate interacting genetic and environmental
factors by integrating findings from GWAS and EWAS then
searching for evidence of toxicological relationships between
those factors that could have an etiological role in the dis-
ease.(19)

Today, with the “introduction of array-based genotyping
techniques allowing simultaneous assessment of up to 1 mil-
lion single nucleotide polymorphisms (SNPs) in a single assay,
it has become possible to cover with varying resolutions,
the entire genome in what are now commonly referred to
as genome-wide association studies (GWAS).”(42) With the
advent of GWAS, a different approach has been utilized, based
on “agnostic” searches with no prior hypotheses.(67) In the
current “post GWAS” era, the focus is on integrating findings
from a vast body of data including genomics, proteomics,
metabolomics, and transcriptomics. Early SNP-based studies
often assessed a few SNPs in a limited set of candidate genes.
However, the current practice is to examine vast numbers of
genes and gene products. Currently, more than 9 million SNPs
have been identified and listed in public data bases.(42,73) This
is one basis for establishing a mode of action information base
for use in risk assessment.(29,74)

EXPOSURE

In an occupational setting, gene-environment interactions
must be carefully defined to include exposures that are

unique to the workplace. For the last quarter century, the
emphasis has focused more on the genetic than the environ-
mental component.(75) This was spurred on by the promise

of the Human Genome efforts, sequencing, mapping, and
storing of large numbers of biological specimens. Partially,
as a consequence of the emphasis on genotyping, the accurate
measurement of many environmental and occupational expo-
sures remains an outstanding and largely unmet challenge in
epidemiology. There is a strong need to develop methods with
the same precision for an individual’s environmental exposure
as there is for the individual’s genome.(75) Clearly, for most
diseases, particularly occupational ones, environment rather
than genetics is an equal or more important risk factor. More-
over, the variability in response to chemicals, which can be
conditioned by genetics, has long been known to also be linked
to exposure variability. “Within-person and between-person
sources of variability in exposure levels were recognized as
early as 1952 when Oldham and Roach applied ANOVA mod-
els to breathing zone samples of dust in British coal miners.”(76)

Variability in exposure can be the result of multiplicative
effects of several variables (jobs, time, locations, sources of
contamination, activities, equipment, worker/source mobility,
and environmental conditions). Historically, exposure data in
epidemiologic studies was rather sparse. In a review by Arm-
strong et al., only 13% of epidemiologic studies used quanti-
tative exposure measurements.(77) The amount and quality of
exposure data has been increasing and new technology (e.g.,
nanosensors), new regulations, practices, and new concepts
(e.g., biomarkers and the exposome), may promote “putting
the E into “G x E” interaction studies.”(78,79) Promising ana-
lytical approaches for more precisely measuring environmen-
tal/occupational substances are in the developmental stage,
including microfluidics, nanotechnologies, and mass and Ra-
man spectrometry.(80–82) Simple inexpensive direct reading
exposure measurement (DREM) techniques should allow for
a broader and more comprehensive exposure assessment in
epidemiological studies and in risk characterization.(78,83)

One of the critical issues in exposure assessment is to
consider both the totality of exposure that might be related
to an adverse effect as well as the particular contribution
of the occupational component.(84,85) An approach known as
meet-in-the-middle (MITM) has been devised. It involves a
combination of efforts within a prospective population study
of a search for intermediate biomarkers which are elevated in
subjects who eventually develop a disease and a retrospective
search for links of such biomarkers to past exposures.(86,87)

The approach uses various omics-based biomarkers to assess
exposure and is likely to be a useful tool to enhance exposure
assessment.(64) Many studies that assess such biomarkers, may
use surrogate as well as target tissues.(20,63,64)

RISK ASSESSMENT INVOLVING INHERITED
GENETIC DATA

Genetic data can be classified as inherited or acquired.(82)

Inherited genetic information is passed on through the
process of meiosis to succeeding generations of organisms.
Acquired genetic information is passed on to generations of
somatic cells within the same organism. Both types of genetic
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information can be used in risk assessment, but we will discuss
inherited genetic data first. Hereditary changes such as poly-
morphisms in metabolic enzymes are useful for stratification
of main effects.

The use of genetic information in quantitative risk as-
sessment (QRA) has been rare and practically no OELs are
based on such information except for internal OELs in the
pharmaceutical industry.(38,89) Naumann et al.(38) incorporated
genetic data (expression of CYP2D6) to develop an OEL for
timololal maleate in the pharmaceutical industry. A polymor-
phism in CYP2D6 influences metabolism of timololol maleate.
Chemical-specific adjustment factors using the CYP2D6 ex-
pression data were developed and used to replace the default
uncertainty factor for inter-individual variability. Nonetheless,
the potential benefit of such use has been identified.(90,91) This
includes contributing to the knowledge base by improving the
understanding of the mechanism of action, clarifying the ex-
trapolation from animals to humans, and explaining variability
in response to exposures. Beyond QRA, genetic information
may help to identify groups at high risk of occupational dis-
ease given a particular exposure whether it is due to allelic
differences in DNA repair enzymes,(92) differential transport
of metal ions(93) or a mismatch between a highly active Phase
I enzyme and a low-activity Phase II enzyme.(94) “Although it
has long been recognized that genetic polymorphism plays an
important role in driving variability in xenobiotic metabolism,
this awareness typically has not translated into the use of these
data in a quantitative sense for risk assessment.”(95) However,
there is a growing literature that shows that polymorphisms
can influence the risk of toxic effects on animals and people
and such influence can be quantitated.(1,9,14,64,95,96) For exam-
ple, Mörk et al.(97) used Monte Carlo simulations and PBPK
modeling to develop chemical specific adjustment factors for
toluene, styrene, and methyl chloride that could account for
known variability in the human population.(97)

Addressing variability is a critical aspect of risk assess-
ment. Integrating data on polymorphisms in enzymes with
physiologically-based pharmacokinetic modeling is one
promising approach to addressing variability. Haber et al.(95)

evaluated the role of polymorphisms in enzymes modulating
the disposition of four diverse compounds: methylene chloride,
warfarin, parathion, and dichloroacetic acid. They used the
analysis to identify key uncertainties in using polymorphism
data and highlighted potential simplifying assumptions that
might be needed to test the hypothesis that the genetic factors
are a substantive source of human variability in susceptibility
to occupational or environmental toxicants. Of highest interest
to those trying to incorporate genetic information into risk
assessment are the following issues:

• how to assess the relative contribution of different enzyme
systems;

• reconciling differences between in vitro and in vivo data;
• the lack of toxicokinetic data for many allelic variants; and
• uncertainties regarding the effect of co-exposures which

could lead to either induction or inhibition.(95)

Another evaluation of the role of polymorphisms in ac-
counting for inter-individual variability identified further un-
certainties that need consideration in risk assessment. A Monte
Carlo simulation analysis of various enzymes (cytochrome P-
450 CYP2D6, CYP2E1, aldehyde dehydrogenase-2, paraox-
onase, GSTM1, GSTT1, GSTP, NAT1, and NAT2) showed
large inter-individual variability in enzyme function and the
need to consider other factors such as blood flow to the liver
and compensating pathways for clearance that affect how a
specific polymorphism will alter internal dose and toxicity.(10)

Such information on genetic polymorphisms and related data
can be used to help refine risk assessments by more accu-
rately defining the Point of Departure, for example, and more
accurately identifying the most susceptible individuals.(94)

RISK ASSESSMENT INVOLVING ACQUIRED
GENETIC DATA

Somatic genetic changes or induced changes in gene regu-
lation can be interpreted as genotoxic effects or “toxicity

pathway perturbations” and ultimately contribute to augmenta-
tion of the weight of evidence for the mode of action determina-
tion.(74) There is a rich history of research on genotoxic somatic
cell changes associated with occupational and environmental
agents.(64,98–104) Genotoxic effects have been considered as
predictors of disease as well as dependent (outcome) vari-
ables in research(21,100) or targets of monitoring in exposed
populations.(99) Genotoxic effects could be considered in risk
assessments if the link between these endpoints and a disease
was validated.(106) Additionally, such genotoxic effects could
indicate toxic exposure in research or risk assessments.(105–107)

The acquired genomic data can also be used in the weight
of evidence evaluation of particular hypotheses that affect
decisions made in developing quantitative toxicity values (e.g.,
human relevance, critical effect, and/or response level selection
and low-dose extrapolation approach.(13)

In low-dose extrapolation, toxicogenomic data are some-
times used to buttress a particular decision on mode of action.
A more direct approach for using toxicogenomic data in QRA
is to use alternative methods such as in vivo, in vitro, or in
silico methods to predict in vivo experimental animal toxicity
endpoints.(13) Thus, data on acquired transcription or other
toxicogenomic changes observed in vitro would be considered
as a new endpoint linked to in vivo toxicity. For example, “as
an alternative to a NOAEL, gene expression could be used to
define a “no observed transcriptional level effect” (NOTLE) as
a point of departure (POD) either for deriving a reference value
after application of uncertainty or safety factors for benchmark
dose modeling of gene expression or pathway activity.(11,13,108)

Increasingly, acquired genetic data are in the form of out-
puts from high-throughput technologies such as microarrays
that can show the level of expression of thousands of genes af-
ter exposure to toxicants.(7,109,110) How these data are
interpreted is critical. Various approaches have been explored.
Gene Ontology (GO) and pathway mapping have been shown
to be powerful approaches to assess microarray outputs.(7,111)
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Gene Ontology is an initiative in the bioinformatics com-
munity to develop a controlled vocabulary of gene and gene
product attributes across all species. A quantitative dimension,
GO-Quant, was developed by Yu et al.(7) in calculating the
corresponding ED50 for each specific functional GO term
found useful in risk assessment. This approach allows for the
identification of a response pathway from toxicant exposure
and can be used for assessing the mechanistic response across
various species. The advent of “humanized mice” expressing
human version of key metabolic enzymes,(55) transporters, or
other key pathway proteins will greatly improve the quality of
data derived from animal experimentation for application in
risk assessment.

EPIGENETIC RESEARCH

Although the concept is of ancient origin, the first use of
the term “epigenetics” is attributable to Waddington in

1942 as the study of processes by which the genotype gives
rise to the phenotype,(112,113) linking environmental and genetic
influences on the same individual.(26) Epigenetics manifests,
not as changes in the DNA sequence, but in the instructions
and timing of gene products. Regulation of gene expression
is a complex process that can have dramatic effects on the
development and characteristics of an individual. Epigenetic
changes are durable and heritable. Each epigenetic change or
modification is referred to as a “mark” or “tag” and the total
complement of epigenetic marks in an individual is referred
to as the epigenome.(26) Epigenetics is the “modification of
DNA or associated proteins other than DNA sequence variation
that carry information content during cell division and these
modifications are mitotically or meiotically heritable chemi-
cal/structural changes that regulate gene activity in the absence
of underlying changes to DNA sequence.”(14,115) Hence, they
can be modifiers of gene-environment interactions.

With respect to environmental chemicals, several epigenetic
mechanisms including DNA methylation, histone modifica-
tions, and microRNA (miRNA expression) can change gene
expression and physiological function.(12) Various classes of
chemicals can cause epigenetic modifications. These include
metals (e.g. arsenic, cadmium, chromium, methylmercury,
nickel), peroxisome proliferators (trichloroethylene,
dichloroacetic acid, trichloroacetic acid), air pollutants (partic-
ulate matter, black carbon, benzene), and endocrine-disrupting/
reproductive toxicants (diethylstilbestrol, Bisphenol A, per-
sistent organic pollutants, dioxin).(12,116) Epigenetic modifica-
tions are not necessarily adverse, so caution must be taken
when incorporating epigenetic data into risk assessment to
insure the change represents an actual hazard (Figure 1).

Epigenetics can contribute to understanding the relationship
between an individual’s genetic background, the environment,
age, and disease.(114,117) It may be that similar questions about
disease risk and modification effects of occupational exposure
using genetic variability can now be asked using epigenetic
variability.(118) Since some epigenetic effects may be heredi-
tary and some acquired through life, it will be necessary to sort

out the contribution from these sources and determine whether
they are independent or interactive risk factors. Additionally,
it will be necessary to determine whether an epigenetic effect
is on the causal pathway to a disease, modifies a pathway
or is only associated with a causal pathway.(115.119) There is
some disagreement in the literature whether the Mendelian
randomization approach can be extended to sorting out causal
relationships between epigenetic patterns, phenotypes, and ex-
posures.(115,119) Additionally, there is no consensus on how to
model or measure methylation status(120) (one of the most com-
mon types of epigenetic effects) or other epigenetic data.(115)

Foley et al.(115) identified the following analytical issues.

• The appropriate statistical model will depend on the sci-
entific question of interest and knowledge about biological
pathways.

• Since methylated CpG sites often exist in clusters and may
show correlated methylation changes, analytical methods
for summarizing correlated data may be required.

• Since most epigenetic data summarizes methylation at in-
dividual CpG sites as proportions, specific models for pro-
portional data will be required.

• Disentangling genetic and epigenetic effects could be a
challenge.

It would also be important to factor in the location of the
CpG islands, since methylation would have differing effects
depending on the site (e.g., promoter sites vs. exons).(115,121)

Epigenetic research, that will be useful in QRA and ulti-
mately as a basis for OELs, still appears to be a long way
off. Technical issues need to be resolved.(121) These include
such issues as how to make sense out of epigenetic data since
the level and pattern of epigenetic marks vary across different
tissues and cells and their presence in easily accessible tissues
may not reflect what would occur in harder to reach tissues
of interest.(115) Including epigenetics in epidemiologic studies
of occupational disease may help explain the relationship
between the genome and the work environment; however, other
environmental exposures outside of work also will need to be
addressed.(27,114)

One approach to advancing epidemiologic use of epigenetic
data is to determine whether epigenetic marks are associ-
ated with complex diseases such as cancer and cardiovascular
disease (CVD).(115,122) An important logistical and technical
step in this approach is to determine if DNA from existing
biological specimen banks (biobanks) could be used to pro-
vide specimens for epigenetic association studies. Consider-
ing this question, Talens et al.(123) concluded that, provided
they are carefully designed, epigenetic studies of complex
diseases may be feasible using genomic data derived from
banked specimens. Perhaps more important, the need for a
larger database should prompt closer attention to study de-
sign, especially when it’s possible to collect blood for future
DNA and microRNA analysis. Studies in steelworkers(124) and
nickel refinery workers(125) demonstrated the efficacy of using
leukocytes to identify histone modifications associated with
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inhalation exposures while simultaneously collecting exposure
data. This could be a model for similar future studies.

RISK ASSESSMENT USING EPIGENETIC DATA

To date, there appear to be no QRA using epigenetic data
that could be the basis of OELs. In fact, there are many

complex issues with epigenetic data that require investiga-
tion before there will be useful epigenetic studies that can
be included in QRAs. Nonetheless, there is a growing body
of information that illustrates how environmental exposures
can be associated with altered epigenetic profiles.(40,115,126)

Much of this information pertains to impacts on offspring and
not on environmental effects in exposed workers. Ray et al.
recently summarized numerous epigenetic changes associated
with occupational exposure to arsenic and four toxic metals
that have strong potential to inform future risk assessments.(126)

Ultimately, as more data are gathered, epigenetic studies may
help explain variable distribution of adverse effects in worker
population groups. To achieve this utility, there is need for
agreement on appropriate paradigms, approaches and methods
for using epigenetic data. An interactive approach will be
essential with risk assessors clearly communicating critical
needs to researchers and, in turn, incorporating that new data
into updated risk assessments.(127) If proof-of-principle causal
linkages can be established between epigenetic changes and
apical endpoints, generation of full dose-response data useful
in risk assessments will follow.(128,129)

There may be many benefits of integrating epigenetic data
into the risk assessment process. Epigenetic data has the po-
tential to inform both mechanism and modes of action and in
combination with genome data may identify novel modes of
action. “Epigenetic data may also be used to identify toxicody-
namic (TD) and toxicokinetic (TK) data, inter-and-intraspecies
differences in TD and TK, exposure assessments, and dose-
response assessments.”(126)

INCORPORATING GENETIC, EPIGENETIC, AND
OCCUPATIONAL DATA IN THE SAME ANALYSES

Ultimately, genetic, epigenetic, and environmental infor-
mation may be included in the same analysis.(130) This

may help identify key regulatory pathways and allow efficient
screening of large numbers of occupational (and environmen-
tal) factors to guide further research, risk assessment, and
occupational health decisions.(11) For example, Gohlke et al.(11)

used network theory(131) to explore how genetic and envi-
ronmental factors interact in complex diseases like metabolic
syndrome and neuropsychiatric disorders. These researchers
integrated gene-centered knowledge from epidemiological and
mechanistic environmental research to identify pathways that
define disease phenotypes. Basu et al. explored the feasibility
of combining SNP data with epigenetic changes at specific
loci to improve the risk assessment of mercury, noting that
global DNA methylation studies were more variable and less
useful.(132) These approaches make possible the development

of new hypotheses in studying the impact of genetic and
environmental factors on disease. Ultimately, epigenetic fac-
tors could be included, and this approach could identify how
different levels of environmental exposures to a target chemical
can modulate the underlying disease pathways. This type of
data could be the basis for an occupational health risk assess-
ment, so we have built upon our previous work with inhaled
manganese(33) to provide a guide for risk assessors (Table 1).
The guide provides key questions that should be addressed
when using genetic and epigenetic data in risk assessment and
the development of OELs.

FRAMEWORK FOR USE OF GENETIC AND
EPIGENETIC DATA IN OCCUPATIONAL
RISK ASSESSMENT

The utility of genetic and epigenetic data in occupational
risk assessment can be broadly seen in the framework

shown in Table 2. The framework represents a 4 × 4 matrix
with the rows showing the risk assessment functions (hazard
identification, dose-response modeling, exposure assessment,
and risk characterization). In the columns, genetic and epi-
genetic data, each subdivided by “inherited” or “acquired,”
are listed. The distinction between inherited and acquired for
genetic and epigenetic is described in Figure 2. The concept
of inherited epigenetic effects is meant to be used figuratively
since the epigenome undergoes constant reconfiguration dur-
ing zygote development and maturation of the individual and
it is difficult to identify a single epigenomic configuration and
define it as “inherited.”

In hazard identification, genetic and epigenetic changes that
are associated with adverse effects can serve as indicators of
hazard, as well as shed light on mode of action. Additionally,
genetic and epigenetic analyses can help in the screening of
large numbers of chemicals to develop risk categories or prior-
ities for in-depth toxicological testing. Genetic and epigenetic
changes can be indicators of exposure in exposure assessment,
either alone or in combination with environmental measure-
ments or job scenario classifications. Genetic and epigenetic
data also can serve as effect modifiers of exposure-disease
relationships, and epigenetic data can serve as effect modifiers
of exposure-gene relationships as well. Genetic and epigenetic
data can be used in deriving uncertainty factors useful in setting
occupational exposure limits.(89) Finally, the prevalence and
distribution of genetic or epigenetic factors in populations can
be used to characterize risks in exposed populations.

QRA AND OCCUPATIONAL EXPOSURE LIMITS

QRA is the foundation on which occupational exposure

limits are developed in the United States.(91,133) However,
there have been no OELs that have been based on genetic or
epigenetic data thus far. When to use genetic or epigenetic data
is a question that has been considered by EPA for environmen-
tal risk assessments.(25,134,135) Kramer et al.(90) developed the
following criteria useful for considering genetic (and possibly
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TABLE I. Guide to Assessing Genetic and Epigenetic Data for Risk Assessment

Genetic Epigenetic
Risk Assessment
Functions Inherited Acquired Inherited Acquired

Hazard
Identification

• Does the agent
damage DNA in
reproductive
cells?

• Does the agent
damage DNA in
somatic cells?

• Does the agent lead to
new epigenetic
marks?

• Does the agent lead to
new epigenetic
marks?

• Does the agent change
gene expression?

• Does the agent lead to
loss of epigenetic
marks?

• Does the agent lead to
loss of epigenetic
marks?

Dose-Response
Modeling

• Does the DNA
polymorphism
change internal
dose?

• Is DNA changed at
current OELs?

• Do the epigenetic
marks change internal
dose?

• Do the epigenetic
marks change at the
current OELs?

• Does the DNA
polymorphism
change the
physiological
response?

• At what dose does
gene expression
change?

• Do the epigenetic
marks change the
physiological
response?

• At what dose do
epigenetic marks
change?

Exposure
Assessment

• Does the DNA
polymorphism
change internal
dose?

• Are Adverse Outcome
Pathways activated?

• Do the epigenetic
marks change internal
dose?

• Are Adverse Outcome
Pathways activated?

• Does the DNA
polymorphism
affect
distribution,
metabolism or
excretion?

• How long are Adverse
Outcome Pathways
activated?

• Do the epigenetic
changes affect
distribution,
metabolism or
excretion?

• How long are Adverse
Outcome Pathways
activated?

Risk
Characterization

• What is the
ultimate
physiological
effect?

• Have rates of cell
proliferation and
apoptosis changed?

• Have rates of cell
proliferation and
apoptosis changed?

• Have rates of cell
proliferation and
apoptosis changed?

• Has increased
tissue damage or
necrosis
occurred?

• What is the ultimate
physiological effect?

• What is the ultimate
physiological effect?

• Is organ function
within normal
physiological
limits?

• Has increased tissue
damage or necrosis
occurred?

• Has increased tissue
damage or necrosis
occurred?

• Is organ function
within normal
physiological limits?

• Is organ function
within normal
physiological limits?

epigenetic) information in risk assessment and development
of OELs.

1. The gene product must be relevant to the pathophysiol-
ogy of a clearly defined and consistent phenotype.

2. Gene function must be associated with exposure to a
regulated-pollutant or, at the very least, to a disease-

progression process known to be associated with expo-
sure to the chosen regulated pollutant.

3. The mutation must be functionally relevant.
4. The magnitude or frequency of occurrence in the

population must be measured, and variation across
populations (e.g., geography, race) must be
considered.
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TABLE II. Framework for use of genetic and epigenetic data in occupational and environmental risk
assessment

Genetic Epigenetic
Risk Assessment
Functions Inherited Acquired Inherited Acquired

Hazard Identification • Screening chemicals • Screening
chemicals

• Screening
chemicals

• Screening
chemicals

• Mutation endpoint • Serve as endpoints • Serve as endpoints • Serve as endpoints
• Effect modifier • MOA • MOA • MOA
• MOA

Dose-Response
Modeling

• Modify
gene-environment
interaction

• Changes in gene
expression with
dose

• Modify
gene-environment
interactions

• Modify
gene-environment
interactions

• Use as adjustment
factors

Exposure Assessment • Effect modifier • Deviations from
normal pattern of
gene expression

• Effect modifier • Effect modifier

• Indicator of
exposure

• Indicator of
exposure

Risk Characterization • Prevalence of
mutations

• Prevalence of gene
expression patterns

• Prevalence of
“marks”

• Prevalence of
“marks”

• Identification of
high-risk groups

• Understand
variability

• Understand
variability

• Understand
variability

• Understand
variability

• Identification of
high-risk groups

• Identification of
high-risk groups

• Identification of
high-risk groups

MOA: mode of action.

5. There must be a high magnitude of association (i.e.,
preferably a relative risk >1.5) between the phenotype
of interest and an adverse health effect.

Although no OELs have been developed making direct
use of genetic data, one example where the potential impact
on OEL setting can be demonstrated is methylene chloride
(dichloromethane). The available information meets the five
criteria above. The metabolism of methylene chloride in mice
and humans has been worked out and there is general ac-
ceptance regarding the metabolic pathway leading to car-
cinogenesis. A key component, distributional information on
genetic polymorphisms of the key enzyme involved in car-
cinogenesis, glutathione S-transferase T1 (GSTT1), is also
available. Jonsson and Johanson(4) used a Bayesian approach
and built on earlier work of El-Masri et al.(136) to consider
how the risks of methylene chloride exposure would differ
when polymorphisms in GSTT1 were estimated across the
population. From their work and follow-up work by David
et al.(137), it is possible to see the impact genetic information
could have on OEL setting. The issue of who is protected
by the OEL becomes critically important—whether it is the
“average” worker (which would include invidivuals lacking
GSTT1 and presumably at zero risk) or the most sensitive
subpopulation (+/+) GSTT1). Their work demonstrates how

the use of this information and these techniques can help to
reduce the uncertainties in the QRA and support OEL-setting.

Ultimately, before genetic and epigenetic data are used for
occupational health risk assessment and OEL development,
published studies must demonstrate that these changes influ-
ence the relationship between an occupational exposure and
adverse effect. Such studies will need to be of the size and
statistical power to be robust, and the data outputs of the
studies need to be useful for statistical modeling. Guidance
such as STrengthening the Reporting of OBservational studies
in Epidemiology (STROBE), and the molecular epidemiologic
variant of it, STROBE-ME, as well as Strength and Reporting
of Genetic Associations (STREGA) and other guidelines will
help assure that genetic and epigenetic studies are useful for oc-
cupational health risk assessment.(138–141) Increasingly, Com-
putation Biology and the use of Adverse Outcome Pathways
allow the extraction of more signal from noise by focusing
on physiologically relevant changes that are consistent across
similar groups of toxicants.(142,143)

CONCLUSION

Understanding the role that genetic and epigenetic fac-
tors play in occupational disease can improve risk as-

sessments and ultimately lead to better worker protection
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through the development of more targeted occupational ex-
posure limits. These improved risk assessments are still on
the horizon, but they can be envisioned. In this article, the
functions of inherited and contemporary genetic and epige-
netic information are identified for each element in the risk
assessment process. There is still much work that needs to
be accomplished to validate genetic and epigenetic markers
for the various functions. Ultimately, risk assessments based
on robust descriptions of mode of action and evidence-based
extrapolations across species, from in vitro to in vivo, may
provide a mechanistic basis for describing the susceptibility of
certain subpopulations.(74)

In addition to the need for further scientific and technical
methods development, there are also ethical, legal, social, and
political considerations.(3,14,91,144-148) While these issues are
beyond the scope of this article, their importance cannot be
underestimated. It is not far-fetched that a worker’s “Right to
Know” might someday extend to the worker’s right to know
their genetic susceptibility to workplace toxicants. Therefore,
attention to these issues is imperative in order to realize the
potential of genetic and epigenetic technologies to enhance
risk assessments and protect workers.
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